
Innovations Syst Softw Eng
DOI 10.1007/s11334-015-0255-5

ORIGINAL PAPER

The network of faults: a complex network approach to prioritize
test cases for regression testing

Imrul Kayes1 · Shafinaz Islam2 · Jacob Chakareski3

Received: 25 November 2014 / Accepted: 21 July 2015
© Springer-Verlag London 2015

Abstract Regression testing is performed to provide con-
fidence that changes in a part of software do not affect other
parts of the software. An execution of all existing test cases
is the best way to re-establish this confidence. However,
regression testing is an expensive process—there might be
insufficient resources (e.g., time, workforce) to allow for
the re-execution of all test cases. Regression test prioriti-
zation techniques attempt to re-order a regression test suite
based on some criteria so that highest priority test cases
are executed earlier. In this study, we prioritize test cases
for regression testing based on the dependency network of
faults. In software testing, it is common that some faults are
the consequences of other faults (leading faults). Dependent
faults can be removed if and only if the leading faults have
been removed. Our goal is to prioritize test cases so that
test cases that have exposed the leading faults in the system
testing phase, are executed first in regression testing. The
leading faults are modeled as the most central faults in the
fault dependency network. We present ComReg, a test-case
prioritization technique based on the dependency network of
faults. We model a fault dependency network as a directed
graph and identify leading faults to prioritize test cases for

B Imrul Kayes
imrul@mail.usf.edu

Shafinaz Islam
shafinazeee10@gmail.com

Jacob Chakareski
jacob@ua.edu

1 Computer Science and Engineering, University of South
Florida, Tampa, FL, USA

2 Electrical and Electronic Engineering, Rajshahi University of
Engineering & Technology, Rajshahi, Bangladesh

3 Electrical and Computer Engineering, University of Alabama,
Tuscaloosa, AL, USA

regression testing. We use a centrality aggregation technique
which considers six network representative centralitymetrics
to identify leading faults in the fault dependency network.We
also discuss the use of fault communities to select an arbitrary
percentage of the test cases from a prioritized regression test
suite. We conduct a case study that evaluates the effective-
ness and applicability of the proposed method. We obtain a
fault dependency network from the development of a vocab-
ulary learning software. We found that the fault network is
a small-world graph with distinguishable community struc-
ture. The leading faults are common in all centralities and
a re-ordering of test cases is feasible for regression testing
based on those leading faults. Our method outperforms tradi-
tional regression testing prioritization techniques in detecting
fault dependencies. Our modeling of the network of faults
provides insights into the requirement of recognizing fault
dependencieswhile re-ordering regression test suites for both
research and practice. The dependency model needs further
evaluation and improvement considering relevant resources
(e.g., man-hours).

Keywords Software testing ·Regression testing ·Test-case
prioritization

1 Introduction

Regression testing is performed after a software is modified.
The purpose of regression testing is to test the modified soft-
ware with some test cases to re-establish our confidence that
the software will perform according to the modified specifi-
cation and the newly introduced changes do not hinder the
behavior of the unchanged part of the software. In a develop-
ment cycle, regression testing may begin after the detection
and correction of faults in a tested software [1]. Regression

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11334-015-0255-5&domain=pdf

I. Kayes et al.

test suite aims to ensure that the evolution of an application
does not result in a low-quality software product. However,
due to the growing complexity of today’s software systems,
regression testing has become a challenging task. Moreover,
recent trends in software development paradigms introduce
new challenges in regression testing. For example, short and
iterative “Agile” software development imposes restrictions
and constraints on how regression testing can be performed
within limited resources [2–4].

Intuitively, the best way to regain confidence from regres-
sion testing is to execute all existing test cases from a
test suite. Unfortunately, regression testing is often directly
associated with high costs. Beizer [5] points out that the
regression testing accounts for asmuch as one-half the cost of
softwaremaintenance.One industrial collaborator of Elbaum
et al. [6] reports that for one of their products of about 20,000
lines of code, the entire test suite requires sevenweeks to run.
Some of the most well-studied software failures, for exam-
ple, the Ariane-5 rocket was blamed on the failure to test
changes in a software system [7].

In general, test-case prioritization techniques seek to
schedule test cases in an order so that the tester obtains max-
imum benefit, even if the testing is prematurely halted at
some arbitrary point [2]. Regression test prioritization aims
to re-order a regression test suite so that those test cases with
highest priorities, according to someestablished criterion, are
executed earlier in the process of regression testing than those
with lower priorities [8]. Researchers have proposed vari-
ous techniques for test-case prioritization to re-order the test
cases for regression testing. These techniques focus on vari-
ous aspects of product development, such as coverage-based
approaches [8–11], requirement-based approaches [12,13]
and constraint-based approaches [14–16].

However, none of the solutions addressed dependencies
among faults while prioritizing. In software testing, it is
known that some faults are the consequences of other faults
(commonly termed as leading faults). Experience shows that
in a software development process, mutually independent
faults can be directly detected and removed, but dependent
faults can be removed if and only if leading faults have been
removed [17]. In worst cases, fault dependencies can cre-
ate a cascade of faults that can severely affect a software
system. For example, in 1990, a fault in the failure recov-
ery code of the AT&T led to cascading faults, which costs 9
h of downtime and at least 60 million in lost revenue [18].
Another example of cascading faults is the escalation of a
divide-by-zero exception into a Navy ship’s network that
left the smart ship dead in the water [19]. Researchers hint
that the Internet is also at risk of cascading failures [20].
We argue that a test case that reveals leading faults should
be executed first in a regression testing process to get an
early confirmation that the software is free from dependent
faults.

We attempted a first step to prioritize regression testing
based on fault dependency in [21].We proposed an algorithm
to prioritize test cases based on fault dependency. However,
in [21], we only considered 1-hop neighborhood or depen-
dencies of faults. This paper uses a fault dependency network
to prioritize test cases for regression testing. We leverage the
faults’ respective positions in the network to determine lead-
ing faults (central faults in the network).

The contributions of this work are:

• First, we describe ComReg, which leverages the fault
dependency network to prioritize test cases for regression
testing. We present a directed graph model for the fault
dependency network and identify leading faults (cen-
tral faults) to prioritize test cases. Our identification of
leading faults is based on a centrality aggregation tech-
nique. Centralities can represent the position of a fault in
a fault network. We propose an aggregation of different
representative centrality metrics (indegree, betweenness,
closeness, eigenvector, pagerank, and hub centrality) into
a final leading score to identify leading faults.

• Second, we discuss the use of fault communities to select
X % of the test cases from a prioritized regression test
suite.

• Finally, we present a case study from the development of
a subject software “Tarantula”. We discuss the test cases
written for the software, the faults it exposed after testing,
and the fault network from the exposed faults. We show
the identification of leading faults for prioritization and
compare the effectivenesswith traditional techniques.We
also show fault communities for a selection of test cases
from the prioritized regression test suite.

The rest of the paper is organized as follows. Section 2
introduces fault dependency-aware test-case prioritization
technique, ComReg. Section 3 presents a case study and eval-
uates ComReg. Section 4 reviews related work and Sect. 5
concludes the paper.

2 Fault dependency-aware test-case prioritization

In this section, first, we provide a formal representation of the
problem (Sect. 2.1). Then we present our regression testing
prioritization technique, ComReg (Sect. 2.2). In Sect. 2.3, we
describe how to select and run X % of the test cases from a
prioritized test suite.

2.1 Problem statement

Based on Elbaum et al. [11], we define a prioritization of test
cases for regression testing as follows.

123

The network of faults: a complex network approach to prioritize test…

Given a test suite T , the set of permutations of T as PT
and a function from PT to the real numbers as f , a priori-
tization of test cases for regression testing solution provides
an ordered test suite T ′ such that for all T ′′, f (T ′) ≥ f (T ′′),
where T ′ ∈ PT and T ′′ ∈ PT .

PT represents the set of all possible prioritization (order-
ings) of T and f is a utility function that, applied to any such
ordering, yields an award value to that ordering. For exam-
ple, let us we have n test cases as (T1, T2, T3, . . . , Tn) ∈ T .
From those test cases, n! orderings are possible. Test-case
prioritization techniques attempt to find an order from n!
number of orderings such that the order maximizes the util-
ity function f .

Let us we have t test cases (T1, T2, T3, . . . , Tt) in the test
suite T . After running those test cases for a system testing,
we get n faults such as (F1, F2, . . . , Fn) as F . There exists
a relation from T to F , R : T → F , such that for each test
case t ∈ T there exists none, single or multiple faults f ∈ F .
Our goal is to prioritize the test suite and select X % of the
test cases for regression testing.

2.2 Our approach: ComReg

WeproposeComReg, a fault dependency-aware test-case pri-
oritization for regression testing. ComReg is based on the fact
that mutually independent faults can be directly detected and
removed, but dependent faults can be removed if and only if
the leading faults have been removed [17]. A leading fault
is the fault that causes dependent faults to occur. For exam-
ple, consider a simple dictionary program, which has a load
functionality to read all words and their meanings from text
files, a next word functionality that allows users to browse
words and a random number generator for generating a num-
ber for an arbitrary selection of a word list. The next word
functionality is dependent on the load functionality in that if
the system fails to read words and meanings, there is no way
to browse the words. So, consider three following faults that
occur.

1. Fault F1: words and meanings upload failure.
2. Fault F2: does not find the next word.
3. Fault F3: randomgenerator does not showa randomnum-

ber.

Figure 1 shows the faults. We can draw an arrow from
Fault F2 to Fault F1 to show the dependency of F2 on
F1. In this case, F1 is a leading fault and F2 is a depen-
dent fault. However, the Fault F3 is an independent fault
(no arrow to or from F3 in Fig. 1). Leading faults tend to
represent a relatively small portion of all the faults in a sys-
tem. For example, Microsoft reports that 80 % of the errors
and crashes in Windows and Office are caused by 20 %
of the entire pool of faults [22]. We propose to prioritize

Fig. 1 Fault dependency
F2

F1

F3

a regression test suite based on leading faults and to run
X % of the test cases which contain leading faults. So, in
our fault dependency-aware test-case prioritization, an order
of the test cases attempts to maximize the utility function
f that determines the number of the leading faults. Fault
dependencies could be due to output, data, control or mod-
ule dependencies.

However, the problem of detecting leading faults is not
trivially solvable. The challenge is due to the fact that faults
have more than local effects. For example, consider a local
effect, Fault A is dependent on Fault B, so A could not be
removed before removing B. But if Fault A is dependent on
Fault B and Fault B is dependent on Fault C, then Fault A
could not be removed before removing Fault B and Fault C.
We present various scenarios of fault dependencies consid-
ering two Faults F1 and F2 in Fig. 2. Some of the scenarios
are listed below.

• Fault F1 is dependent on Fault F2 (Fig. 2a)
• Fault F1 is dependent on Fault F2, other faults are depen-
dent on Fault F1 (Fig. 2b)

• Fault F1 is dependent on Fault F2, other faults are depen-
dent on Fault F2 (Fig. 2c)

• Fault F1 is dependent on Fault F2, other faults are depen-
dent on both Fault F1 and Fault F2 (Fig. 2d).

So, it appears that if we consider all faults and their depen-
dencies, the situation becomes very complex. However, this
situation can be captured by a complex network as shown
in Fig. 3. The network is comprised of 77 faults (shown as
nodes) and 254 dependencies (shown as edges). There is an
edge from Fault A to Fault B if Fault A is dependent on Fault
B. The leading faults in the network are those who occupy
central positions.

Formally, we model a fault dependency network as a
directed graph F = (V, E), where a node v ∈ V is a fault
and an edge ei j ∈ E from vi ∈ V to v j ∈ V denotes that the
fault vi is dependent on the fault v j . The number of nodes and
edges are |V | = n and |E | = m, respectively. The directed
graph can be represented by a n ∗ n matrix Fn∗n , where an
entry F(i, j):

F(i, j) =
{
1 if ei j ∈ E

0, otherwise.
(1)

123

I. Kayes et al.

Fig. 2 Examples of various
fault dependencies considering
two faults: Fault F1 and Fault
F2. a Fault F1 is dependent on
Fault F2. b Fault F1 is
dependent on Fault F2 and other
faults are dependent on Fault F1.
c Fault F1 is dependent on Fault
F2 and other faults are
dependent on Fault F2. d Fault
F1 is dependent on Fault F2 and
other faults are dependent on
both Faults F1 and F2

F1

F2

F1

F2

FF

F1

F2

FF

F F

F1

F2

F F

(a) (b) (c) (d)

Fig. 3 A fault dependency network of 77 nodes and 254 dependencies.
Node size is proportional to indegree

The position of a node (fault) in the network can be repre-
sented in network analysis by different centralitymetrics. For
example, the larger the number connections a fault receives
from its direct neighbors, the higher number of other faults
depends on the fault. Without removing this fault, all depen-
dent faults could not be removed. Moreover, the larger the
number of paths between other pairs of faults a fault is part of,
the more it can control the fault propagation between distant
faults. Based on this intuition, we conjecture that a fault’s
‘position’ is determined by and manifests via its ‘centrality’
in the fault network. Next, we will explain how we can use
different network centralities to define a fault’s position in
the network.

Wepropose to aggregate different representative centrality
metrics into a final leading score to identify the leading faults
based on [23]. In [23], the authors used centrality aggrega-
tion technique to identify influential bloggers in a blogging
network. The method has been also used to identify most

retained bloggers [24,25]. We define the leading score of a
fault (node) as the average of the positions of that node in
decreasing order of centrality scores over various central-
ity metrics. Specifically, each centrality metric assigns each
node a score that can be used to order the nodes in decreas-
ing order of importance (according to that centrality). This
allows each fault to receive a rank according to each cen-
trality metric: the first-ranked fault will be the most central
one, the last ranked will be the one with the lowest centrality
score. Faults having the same centrality score are given the
same rank. A fault’s final rank is the average rank over all
centrality measures. We selected six representative central-
ity metrics as the focus of our study: indegree, betweenness,
closeness, eigenvector, pagerank, and hub centrality.

Degree centrality is defined as the number of links that a
node has. In a directed graph like fault dependency graph,
two types of degree centralities are possible: indegree and
outdegree centrality. For a node, the number of direct incom-
ing connections is characterized as indegree of the node. On
the other hand, the number of direct outgoing connections
is characterized as outdegree of the node. Although simple,
indegree centrality intuitively captures an important aspect
of a fault’s potential leading position: faults who have many
incoming connections from many other faults are those that
make other faults to depend. In our fault dependency graph
F , the indegree centrality of a fault i can be represented by
the following equation.

indegree(i) =
∑

1≤ j≤n

Fji . (2)

Betweenness centrality, which measures the extent to
which a node lies on the shortest paths between other nodes,
was introduced as a measure for quantifying the control of
a human on the communication between other humans in a
social network [26]. Faults with high betweenness centrality
may have considerable influence within a fault dependency

123

The network of faults: a complex network approach to prioritize test…

network by virtue of their control over fault propagation
among other faults. The nodes with the highest between-
ness are also the ones whose removal from the network will
most disrupt communications between other nodes because
they lie on the largest number of paths taken by faults [27].
Formally, the betweenness centrality of a node is the sum of
the fraction of all-pairs shortest paths that pass through:

C(v) =
∑
s,t∈V

σ(s, t |v)

σ (s, t)
(3)

where v is the set of nodes, σ(s, t) is the number of short-
est (s, t) paths, and (s, t |v) is the number of those paths
passing through some nodes v other than s, t. If s = t ,
σ(s, t) = 1, and if v ∈ s, t, σ (s, t |v) = 0. Our implementa-
tion of betweenness for this research is based on the Brandes
algorithm [28].

Closeness centrality measures the mean distance from a
node to other nodes, assuming that faults propagate along the
shortest paths. Formally, the closeness centrality (C(x)) of a
node x is defined as follows:

C(x) = n − 1∑
y∈U,y �=x d(x, y)

(4)

where U is the set of all nodes; n is the cardinality of U ;
d(x, y) is the distance between two nodes, node x and node
y; d is the average distance between x and the other nodes
(there are n − 1 such distances possible and d is an average
of those distances). In our fault dependency network, this
centrality measure estimates the amount of faults a fault may
have access to compared to other faults. Specifically, a fault
with lower mean distance to others can reach others faster.

The centrality of a node does not only depend on the num-
ber of its adjacent nodes, but also on their relative importance.
Eigenvector centrality allocates relative scores to all nodes in
the network such that high-score neighbors contribute more
to the score of the node. Formally, Bonacich [29] defines the
eigenvector centrality C(v) of a node v as the function of the
sum of the eigenvector centralities of the adjacent nodes, i.e.,

C(v) = 1/λ
∑

(v,t)∈E
c(t) (5)

where λ is a constant. This can be rewritten in vector nota-
tion, resulting in an eigenvector equation with well-known
solutions.

Originally designed as an algorithm to rankwebpages [30],
PageRank computes a ranking of the nodes in a graph based
on the structure of the incoming links. The algorithm assigns
a numerical weighting to each node of a network with the
purpose of “measuring” its relative importance within the
network.

Hubs and authorities are other relevant centralities in the
context of the fault network. In a graph, authorities are nodes
that contain useful information on a topic of interest; hubs
are nodes that know where the best authorities are to be
found [27]. A high authority centrality node is pointed to
by many hubs, i.e., by many other nodes with high hub cen-
trality. A high hub centrality node points to many nodes with
high authority centrality. These two centralities can play a
significant role also in our work of finding leading faults.
They can infer that the faults that have high hub and author-
ity centrality are not only leading but also they are connected
with leading faults.

2.3 Fault communities to select X % of test cases

A common approach of regression testing is to select and run
X %of the test cases froma prioritized test suite. However, an
optimal selection is always challenging. On one hand, a few
selections of test cases might remain a significant portion of
the software virtually untested. On the other hand, too many
selections of test cases will require to test the entire system
again. However, in a fault network, fault communities could
be leveraged to select an X % of the test cases. Complex net-
works show communities in them: a community is a subset of
nodes within which node to node connections are dense, but
betweenwhich connections are less dense [31]. Communities
are natural outcomes of real-world networks. For example,
e-mail network [32], social application network [33], mobile
communication network [34], blogging network [35], and
yeast protein–protein interaction network [36] revealed com-
munity structures. Figure 3 shows communities in a fault
network; nodes in a community are colored the same.

Newman proposed a community detection algorithm [37]
based on modularity maximization. Modularity is a utility
function that computes the quality of a particular division
of a network into communities. It is defined as the fraction
of the edges that fall within the given community minus the
expected such fraction if the edges were distributed at ran-
dom.

Q = (E1 − E2) (6)

where E1 is the fraction of edges within communities and
E2 the expected fraction of such edges.

The expected fraction of edges is typically evaluated
within a random graph conditioned on the degree sequence
of the original network. In that random graph, the probability
of an edge between two nodes i and j is (ki ∗ k j)/2m, where
ki is the degree of node i and m is the total number of edges
in the network. The modularity can then be written

Q = 1

2m

∑
i j

(
Ai j − ki ∗ k j

2m

)
δ(ci , c j) (7)

123

I. Kayes et al.

δ(ci , c j) =
{
1 if i and j belong to the same community

0, otherwise

(8)

where Ai j is the matrix representation of the graph, δ is the
Kronecker delta, ci is the label of the community to which
node i is assigned.

The authors describe the modularity for an undirected
graph. However, the modularity can be extended for a
directed graph such as fault dependency network. In a ran-
dom directed graph, the probability of an edge from node j
to node i is (kouti ∗ kini)/m. Then for the fault dependency
network the above equation could be written as

Q = 1

m

∑
i j

(
Fi j − kouti ∗ kini

m

)
δ(ci , c j) (9)

where F is a fault dependency matrix and Fi j is 1 if there is
an edge from j to i and zero otherwise.

We propose to apply the community detection algorithm
to uncover communities of the faults. After detecting com-
munities, the faults in the same communities with a leading
fault could be identified and corresponding test cases could
be executed as a regression test. Moreover, all modules in
a software are not the same in terms of fault tolerance. For
example, login credential authentication or a module that
processes financial transaction are more crucial than a mod-
ule that prints documents. Furthermore, Pareto principle also
(known as 80–20 rule) applies to software systems. The
Pareto principle [38] states that for many events, roughly
80 % of the effects come from 20 % of the causes. The Stan-
dish Group’s report shows that in a software system, 45 % of
the features are never used, 19 % of features are rarely used,
19 % of features are used sometimes, 13 % of features are
used often and only 7 % of features are always used [39]. So,
as a matter of fact, only 20 % of software features are often
and always used. It becomes apparent that ensuring quality
of those 20 % of software features is vital. Fault communi-
ties could be leveraged to ensure the quality of prioritized
features (e.g., 20 % of software features). The leading faults
and faults from their communities revealed by the test cases
(which target prioritized features) could be used in select-
ing regression test cases. This way a regression testing can
ensure a high customer satisfaction.

3 Case study and evaluation

The goal of the case study is to prioritize a test suite of size N
and identify X %of the test cases from the suite for regression
testing. To accomplish the goal, we developed a medium-
scale English vocabulary learning software, “Tarantula”. In

the process of development, we wrote test cases, executed
the test cases, applied our method ComReg to prioritize the
test cases and identified X % of the test cases for regression
testing. In this section, we first give a detailed overview of
the functionalities of “Tarantula”. Then we describe the test
cases and relevant faults that we have got after applying the
test cases in an initial product. We explain the features of
the Tarantula, so that readers can understand the underlying
goals of the test cases. Finally, we present the leading faults
using our centrality aggregation method and compare Com-
Reg with traditional approaches. We also show and discuss
the relevance of using community detection techniques in the
fault network.

3.1 An overview of Tarantula

The Tarantula is an English vocabulary learning software,
which is built targeting high-frequency GRE words. When
a user installs and runs the software, she is presented with
50 word lists. Figure 4 shows the first window of Taran-
tula. The word lists consist of 4054 words and when a user
hovers a mouse on a word list icon, it shows the first and
the last word in the word list. Users can click on a word
list icon to exercise various features of that word list. How-
ever, users can use the random button (upper right corner
in Fig. 4) to select a random word list (see Fig. 5). When
users select a word list, relevant features of the word list
are shown in a separate option window as shown in Fig. 6.
There are several options available on the option window for
users to learn and practice words of a word list. The options
are: “Learn Word List”, “Multiple Choice”, “Reverse Chal-
lenge”, “Words Jam” and “Flip Words”. Users can click a
radiobutton to select an option. The “Learn Word List” fea-
ture shows the words and their meanings from the word list
serially (see in Fig. 7). Users can use “Next” and “Prev” but-
tons to view next and previous word, respectively. There is a

Fig. 4 First window of Tarantula

123

The network of faults: a complex network approach to prioritize test…

Fig. 5 Random window in Tarantula

Fig. 6 Option window of Tarantula

Fig. 7 Learn Word List feature of Tarantula

counter which indicates the serial number or position of the
word in the word list.

The “Multiple Choice” feature shows a randomword from
the word list with five possible meanings (see Fig. 8). Mean-
ings are from the same word list taken randomly, and of them
one is appropriate for the word shown. When users click
a meaning of the word, the “Result” label shows whether

Fig. 8 Multiple Choice feature of Tarantula

Fig. 9 Reverse Challenge Choice feature of Tarantula

the selection is right or wrong. There is a timer label which
increases in each second to show how much time a user is
taking. The “Count” label shows the number of words a user
has practiced. Users can click on a “Next” button to get a
new word. The “Reverse Challenge” feature is the opposite
of “Multiple Choice” feature, where users are expected to
match meanings to words (see Fig. 9). The “Words Jam”
feature shows ten words from the word list on one side and
their meanings from the word list on the other side. Words’
and their meanings’ positions on each side are random (see
Fig. 10). Users have to click a word and then the meaning of
the word (or vice versa). If the meaning of the word is right
then both of them will disappear from the Jam. The “Flip
Words” feature shows a random word from the word list to
guess (see Fig. 11). Users can click “Flip” button to see the
meaning of the word.

3.2 Development of Tarantula

The Tarantula is a desktop application, written in C# pro-
gramming language and we used Microsoft Visual Studio

123

I. Kayes et al.

Fig. 10 Words Jam feature in Tarantula

Fig. 11 Flip Words feature in Tarantula

2010 platform. The software consists of 19,390 lines of code.
It can be installed from GitHub.1 The code of Tarantula is
also publicly available at GitHub.2

We first developed a web crawler using Python program-
ming language to crawl a subset of HTML pages from [40].
These pages have all the words and their meanings. We
parsed the crawled HTML pages using a parser (also writ-
ten in Python). The parser went through all HTML pages
and extracted words and meanings using regular expres-
sions. Thenwe created the repository of fifty word lists (4054
words) from the extracted words and meanings. Finally, we
used the repository as a word database for Tarantula.

3.3 Test cases and faults

Based on the required features, we wrote fifty test cases
before the development. We ran the test cases after finish-

1 https://github.com/ImrulKayes/Tarantula/blob/master/Tarantula1.0.
msi.
2 https://github.com/ImrulKayes/Tarantula.

ing an iteration of the development cycle. Sixteen of the test
cases revealed 23 faults. The test cases and the faults are
below.

• Test case #1
Action: click on a Word List icon to enable the system to
load the words of the list with their meanings.
Expected result: the Word List should be loaded with
features.
Fault #1: the Word List is unavailable due to missing of
the file.

• Test case #2
Action: select the Learn Word List option from the
Radiobuttons of a word list.
Expected result: a random word from the word list and
its meaning should be shown.
Fault #2: the word in the selected word list is not gener-
ated.
Fault #3: the meaning in the selected world list is not
available.

• Test case #3
Action: click on the Next button on the Learn Word List
feature.
Expected result: a new random word from the word list
and its meaning should be shown.
Fault #4: Next button does not generate a random word.
Fault #5: Next button does not generate a meaning.

• Test case #4
Action: click on the Previous button event in the Learn
Word List feature.
Expected result: a new random word from the word list
and its meaning should be shown.
Fault #6: Previous button does not generate a random
word.
Fault #7: Previous button does not generate a meaning.

• Test case #5
Action: check the Count functionality in the Learn Word
List feature by clicking on theNext and Previous buttons.
Expected result: Count should be increased by one on
clicking Next button and count should be decreased by
one on clicking Previous button.
Fault #8: Count does not increase after clicking the Next
button.
Fault #9: Count does not decrease after clicking the Pre-
vious button.

• Test case #6
Action: select the Multiple Choice option from the
Radiobuttons of a word list.
Expected result: a random word from the word list and
its possible choices of meanings should be shown. The
meanings are also from the same word list.
Fault #10: the word is not generated.
Fault #11: meanings are not available.

123

https://github.com/ImrulKayes/Tarantula/blob/master/Tarantula1.0.msi
https://github.com/ImrulKayes/Tarantula/blob/master/Tarantula1.0.msi
https://github.com/ImrulKayes/Tarantula

The network of faults: a complex network approach to prioritize test…

• Test case #7
Action: verify the functionality of the Multiple Choice
option. Select the right meaning of the word. Select a
wrong meaning of the word.
Expected result: the system should show “Correct” if the
choice is right, otherwise it will show a message saying
that the choice is wrong.
Fault #12: the “wrong” message is not shown.

• Test case #8
Action: verify Timer functionality of theMultiple Choice
option. Select the Multiple Choice option from the
Radiobuttons of a word list. Then click the Next button.
Expected result: the Timer should start from a zero value.
It will increase by one after each second. Clicking the
Next button should set it a zero value.
Fault #13: the Counter does not increase.

• Test case #9
Action: select the Words Jam option from the Radiobut-
tons of a word list.
Expected result: ten words and their meaning should be
shown for matching from the word list.
Fault #14: words in Words Jam are missing.
Fault #15: meanings inWords Jam are missing.

• Test case #10
Action: click a word and then click its meaning in the
Words Jam feature. Click a meaning and then click its
corresponding word in theWords Jam feature.
Expected result: the word and the meaning should be
disappeared.
Fault #16: the word does not disappear.

• Test case #11
Action: in Words Jam feature, click a word and click a
wrong meaning of the word.
Expected result: the word and the meaning should not be
disappeared.
Fault #17: the word disappears.

• Test case #12
Action: click Load Next Jam in Words Jam feature.
Expected result: ten words and their meanings should be
shown to match and Jam counts should be increased by
one.
Fault #18: Jam Count does not increase.

• Test case #13
Action: select Flip Words option from the Radiobuttons
of a word list.
Expected result: a random word should be shown which
will allow the users to guess the meaning of the word.
Fault #19: the word is not generated.

• Test case #14
Action: click the Flip button in Flip Words feature.
Expected result: the meaning of the word should be
shown and the text “Flip” of the button should be changed
as “Next”.

Fault #20: meaning is not available.
Fault #21: text does not change.

• Test case #15
Action: check the random word list generator, click the
Rand button.
Expected result: a random word list number should be
generated.
Fault #22: the random generator does not generate a ran-
dom number.

• Test case #16
Action: click the Go to Word List button of the random
word list generator.
Expected result: the word list should be loaded with fea-
tures.
Fault #23: the word list is not loaded.

3.4 Properties of the fault network

As discussed in Sect. 2.2, a fault dependency network is a
directed graph F = (V, E), where a node v ∈ V is a fault
and an edge ei j ∈ E from vi ∈ V to v j ∈ V denotes that
the fault vi is dependent on the fault v j . The directed graph
can be represented by a n ∗ n matrix Fn∗n , where an entry
F(i, j):

F(i, j) =
{
1 if ei j ∈ E

0, otherwise.
(10)

The fault dependency matrix can be constructed after the
system testing is done. For example, in a Scrum process, a
fault review is usually done before the regression testing by
examining reported faults on the “Dashboard”. In our case
study, running the test cases we have got a fault dependency
matrix F shown in Table 1. The fault dependency matrix has
23 faults and we associated relevant dependencies from Sect.
3.3. Figure 12 shows the largest component of the fault net-
work (22 faults), where node size is proportional to indegree
of the node. We used Gephi (https://gephi.org/) to visualize
and obtain structural properties of the network. The struc-
tural properties of the fault network (largest component) are
presented in Table 2.

A notable characteristic of the fault network is the high
clustering coefficient. Given a networkG = (V, E), the clus-
tering coefficient Ci of a node i ∈ V is the proportion of all
the possible edges between neighbors of the node that actu-
ally exist in the network [27]. The clustering coefficient is
defined as:

C = 3 ∗ Number of triangles

Number of connected triples of the nodes.
(11)

In the fault network, for a node vi ∈ V , there could be
ki (ki − 1) links exist among the neighborhood of vi , where

123

https://gephi.org/

I. Kayes et al.

Table 1 Fault dependency matrix

Faults ↓→ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

1 0

2 1 0

3 1 1 0

4 1 1 1 0

5 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 1 1 0

11 1 1 1 0

12 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

13 1 1 1 0

14 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

15 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

16 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

17 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

18 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0

19 1 1 1 0

20 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

21 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

22 0

23 1 1 0

Fig. 12 The fault dependency network. Node size is proportional to
indegree. Nodes in a community are colored the same (color figure
onine)

ki is the number of neighbors of vi . So, the local clustering
coefficient of fault vi in the fault network is:

C = |{e jk : v j , vk ∈ Neighbor(Vi), e jk ∈ E}|
ki ∗ (ki − 1)

. (12)

Table 2 Structural properties of the fault network

Nodes 22

Edges 97

Average indegree 3.95

Average path length 1.074

Average clustering coefficient 0.416

The clustering coefficient for the whole network is the
average of the local clustering coefficients of all the nodes
n [41]:

C = 1

n

n∑
i=1

Ci . (13)

A high clustering coefficient in the fault networks implies
that a faults’ connections are interconnected and have a
greater effect on one another. The small average path length
(1.074), comparable with that of the corresponding random
graph of the same size (1.675), together with the high average
clustering coefficient (the fault network has average cluster-
ing coefficient 0.416, where a same size random graph has

123

The network of faults: a complex network approach to prioritize test…

Table 3 Top 10 faults according to each centrality measurement, sorted in increasing order by rank from left to right (color figure online)

IDC Fault#1 Fault#2 Fault#3 Fault#4 Fault#5 Fault#14 Fault#15 Fault#6 Fault#13 Fault#7
BC Fault#1 Fault#2 Fault#3 Fault#4 Fault#15 Fault#14 Fault#17 Fault#21 Fault#21 Fault#13
CC Fault#1 Fault#2 Fault#3 Fault#4 Fault#15 Fault#5 Fault#6 Fault#7 Fault#8 Fault#9
EC Fault#1 Fault#2 Fault#3 Fault#4 Fault#5 Fault#6 Fault#7 Fault#8 Fault#9 Fault#15
PC Fault#1 Fault#2 Fault#3 Fault#4 Fault#5 Fault#13 Fault#14 Fault#15 Fault#6 Fault#11
HC Fault#1 Fault#2 Fault#3 Fault#4 Fault#5 Fault#6 Fault#7 Fault#8 Fault#9 Fault#15
Faults common to all centralities are colored the same
IDC indegree centrality, BC betweenness centrality, CC closeness centrality, EC eigenvector centrality, PG pagerank centrality, HC hub centrality

Table 4 Average rank of the top
10 faults

Faults’ ID Average rank

Fault #1 1.00

Fault #2 1.33

Fault #3 2.33

Fault #4 3.33

Fault #15 5.16

Fault #5 5.33

Fault #6 6.00

Fault #14 6.17

Fault #7 6.5

Fault #17 7.00

0.295), places the fault network in the category of small-
world graphs [41].

3.5 Leading faults and prioritized test cases

As described in Sect. 2.2, we use centrality metrics to rank
leading faults in the network. To manage the fault network
and compute centralities, we used Python 2.7 with the Net-
workX3 library. Faults that appear among the top 10 in
multiple centralitymetrics are represented in color in Table 3.
The average rank of the top 10 leading faults and their aver-
age ranks considering all centralities are shown in Table 4.
Out of the ten leading faults listed on each centrality, six
faults (60 %) are common in all the centralities. To observe
more closely, we plot the ranks of the top 10 of the faults
assigned by all centralities, shown in Fig. 13. As expected,
a fault’s assigned ranks from centralities form a cluster and
together with all the clusters we can visualize a straight line.
This shows that all the centralities tend to rank the same fault
in the top.

Note Pareto principle described in Sect. 2.3—for many
events, roughly 80 % of the effects come from 20 % of
the causes. Pareto principle also holds for the fault depen-
dency network. In the fault dependency network, 78 out of
97 (80.41%) edges are incident on top 5 nodes out of 23
nodes (21.73 %). It shows that 80.41% of the fault depen-

3 http://networkx.github.io/.

 1

 10

 100

 1 10

R
an

k
as

si
gn

ed
 b

y
ea

ch
 c

en
tr

al
ity

Degree

Betweenness

Closeness

Eigenvector

PageRank

Hub

Fig. 13 Assigned rank of top 10most central faults from all centralities

dencies are due to 21.73 % of faults—almost equal figures
from Pareto principle.

Finally, our prioritized ordering of the test cases for regres-
sion testing based on leading faults’ exposure in test cases
is: T1, T2, T3, T4, T9, T11, T5, T8, T14, T6, T10, T12, T13,
T7, T16, T15 (T denotes a test case).

3.6 Effectiveness of ComReg

We used three techniques to prioritize our regression test
suite and compared them to ComReg. We want to observe
whichmethod has faster fault dependency detection rate. The
techniques are the following:

1. Prioritization using relevant slices (ReSl): ReSl priori-
tizes test cases taking into account the coverage require-
ments present in the relevant slices of the outputs of test
cases [42].

2. Prioritization based on function call path (FuCa): FuCa
leverages function call-level paths and prioritizes test
cases based on those coverage paths [43].

3. Random prioritization (random): random prioritizes test
cases based on a randomization algorithm.

123

http://networkx.github.io/

I. Kayes et al.

APFDD=85.10%

APFDD=45.32%

0

25

50

75

100

25 50 75 100

Percentage of test case executed

P
er

ce
nt

ag
e

of
 fa

ul
t d

ep
en

de
nc

y
de

te
ct

ed

ComReg

Random

Fig. 14 APFDD for the prioritized test cases using ComReg and ran-
dom techniques

APFDD=85.10%

APFDD=54.10%

0

25

50

75

100

25 50 75 100

Percentage of test case executed

P
er

ce
nt

ag
e

of
 fa

ul
t d

ep
en

de
nc

y
de

te
ct

ed

ComReg

ReSl

Fig. 15 APFDD for the prioritized test cases using ComReg and ReSl
techniques [42]

We used a metric, average of the percentage fault depen-
dency detected (APFDD) [21], to measure effectiveness of
ComReg to the techniques described above. The APFDD
quantifies how rapidly a prioritized test suite can detect
dependency among faults. The values of the APFDD range
from 0 to 100; higher value implies faster fault dependency
detection. Figures 14, 15, and 16 show the percentage of
test cases executed and the percentage of fault dependency
detected for the test cases prioritized by ComReg and other
methods (random, ReSl and FuCa, respectively). The areas
under the curves represent the weighted APFDD. From the
figures, we see that the random prioritization method per-
formed the worst, yielded only 45.32 % APFDD. The ReSl
and FuCa methods performed moderately, both were better
than the random prioritization method with APFDD 54.10%
and 66.73%, respectively. OurmethodComReg provided the
best value of the APFDD (85.10 %), hence outperformed the
random, ReSl and FuCa methods in rapidly detecting fault
dependencies.

APFDD=85.10%

APFDD=66.73%

0

25

50

75

100

25 50 75 100

Percentage of test case executed

P
er

ce
nt

ag
e

of
 fa

ul
t d

ep
en

de
nc

y
de

te
ct

ed

ComReg

FuCa

Fig. 16 APFDD for the prioritized test cases using ComReg and func-
tion call path techniques [43]

3.7 Community detection techniques

We used a popular modularity maximization approach,
Louvain method [44], to detect fault communities in the
network. Louvain method is a greedy optimization method
that attempts to optimize the modularity of a partition of the
fault network. The optimization is performed in two steps:
modularity maximization and community aggregation. In
modularity maximization step, the method looks for “small”
communities by optimizing modularity locally. In commu-
nity aggregation step, it aggregates nodeswhich belong to the
same community and builds a new network whose nodes are
the communities. Two steps are repeated iteratively until a
maximum of modularity is attained and a hierarchy of com-
munities is produced. Applying the algorithm on the fault
network, we have got three fault communities: community
#1 (pink color nodes in Fig. 12) has seven faults, community
#2 (green color nodes in Fig. 12) has nine faults and commu-
nity #3 (violet color nodes in Fig. 12) has six faults. Leading
faults are distributed among communities. For example, com-
munity #1, community #2 and community #3 have one, two
and two top leading faults, respectively, out of top 5 leading
faults. As discussed in the Sect. 2.3, leading faults and faults
from their communities revealed by the test cases (which tar-
get prioritized features) could be used in selecting regression
test cases. For example, leading fault Fault # 1’s community
has eight faults originated from seven test cases (46.66 % of
test cases).

4 Related work

Different solutions have been proposed to prioritize test cases
for regression testing. In this section, we discuss test-case
prioritization techniques from the literature.

123

The network of faults: a complex network approach to prioritize test…

Coverage-based prioritization techniques aim to achieve
higher fault detection rates by maximizing early cover-
age. The solutions are inspired by the intuition that early
maximization of structural coverage will also maximize
early fault detection. Rothermel et al. proposed a family of
techniques [9,10] for test-case prioritization based on sev-
eral coverage criteria. They considered different types of
coverages: branch-total, branch-additional, statement-total,
statement-additional, fault exposing potential (FEP)-total,
and FEP-additional. A branch-total coverage solution priori-
tizes test cases according to the number of branches covered
by individual test cases. On the other hand, branch-additional
prioritizes test cases according to the additional number of
branches covered by individual test cases. Statement-total
and statement-additional coverage-based solutions are sim-
ilar to previous two approaches, but rather than considering
branches, they consider statements. The FEP-total and FEP-
additional are based on programmutation. Programmutation
produces a mutant version of the program by introducing
modifications to the program source. The prioritization tech-
niques prioritize the test cases such that the test cases can
reveal the difference between the original program and the
mutant. The authors introduced a metric average percentage
of fault detection (APFD) to quantify the success of a priori-
tization. Elbaum et al. [8,11] further proposed prioritization
techniques covering coverage criterion at the function level,
while Do et al. [45] considered the coverage criteria at the
block level. Korel et al. discussed several model-based test
prioritization heuristics in [46,47]. Their coverage criteria is
system model; they identified elements of the model related
to source-code modifications and applied heuristics to prior-
itize test cases so that early fault detection in the modified
system is maximized. Jones and Harrold described a fine-
grain coverage criterion in [48], which considers a modified
condition/decision coverage.

Requirement-based approaches consider a software’s
requirement as a basis for prioritization of test cases. Srikanth
et al. [12] prioritized test cases based on four factors:
requirements volatility, customer priority, implementation
complexity, and fault proneness of the requirements. Krish-
namoorthi at al. [13] adopted a similar approach. Their
prioritization is based on six factors: customer priority,
changes in requirement, implementation complexity, com-
pleteness, traceability and fault impact. However, a potential
weakness of requirement-based approaches is that require-
ment properties are subjective and thus estimations might be
biased.

Constraint-based approaches consider different cons-
traints and practical complications in test-case prioritization.
Kim et at. [49] consider resource and time constraints.
The resource and time constraint do not allow the execu-
tion of the entire test suite for a regression testing. They
proposed a heuristic that uses historical information to

do test-case prioritization. Alspaugh et al. [16] consider a
situation when regression testing is performed in a time-
constrained environment. They empirically compared seven
Knapsack solvers (e.g., greedy, dynamic programming and
the core algorithm) and identified a test suite reordering
that rapidly covers the test requirements and always ter-
minates within a specified testing time limit. Walcott et
al. [15] proposed a genetic algorithm-based time-aware test-
case prioritization technique and empirically compared the
approach with the initial ordering, the reverse ordering and
two control techniques (random prioritization and fault-
aware prioritization). They defined a metric to evaluate the
effectiveness of prioritization in a time-constrained environ-
ment. Zhang et al. [14] also studied time-aware test-case
prioritization problem. Their proposed test case prioritiza-
tion is based on integer linear programming. They empiri-
cally showed that their two proposed techniques outperform
genetic algorithm-based time-aware test-case prioritization
and four other traditional techniques for test-case prioritiza-
tion.

Researchers used a number of other criteria to priori-
tize test cases. Sherriff et al. prioritized test cases based on
historical change records in [50]. They proposed a method-
ology for determining the effect of a software feature change
and then prioritized regression test cases by gathering soft-
ware change records and analyzing them through singular
value decomposition. Leon and Podgurski [51] introduced
distribution-based filtering and prioritized test cases based
on the distribution of the profiles of test cases in the
multi-dimensional profile space. Sampath et al. [52] prior-
itized test cases for web applications. They prioritized test
suites by test lengths, frequency of appearance of request
sequences and systematic coverage of parameter values and
their interactions. Rummel et al. [53] introduced a prioritiza-
tion technique based on data-flow analysis. They focused on
the definition and use of program variables for the data-flow
analysis. Jeffrey and Gupta [42] prioritized test cases using
relevant slices. Qu et al. [54] prioritized test cases in a black
box environment.

However, none of the above solutions considered depen-
dencies among faults in prioritizing test cases for regression
testing. In software testing, it is known that some faults are the
consequences of other faults (leading faults). So, intuitively,
test cases that revealed the leading faults should be executed
first in a regression testing in order to get an early confir-
mation that software is free from dependent faults. In [21],
we took the first step to prioritize regression testing based on
fault dependency.We proposed an algorithm to prioritize test
cases based on fault dependency. We also proposed a metric
APFDD to quantify how rapidly a prioritized test suite can
detect dependencies among faults. However, that work only
considered 1-hop neighborhood or dependencies of faults.
This paper leverages a fault network for prioritization.

123

I. Kayes et al.

5 Summary and discussions

In this paper, we have presented ComReg, which uses a fault
dependency network to prioritize test cases for regression
testing. We have modeled a fault dependency network as a
directed graph and identified leading faults to prioritize test
cases. We have leveraged a network centrality aggregation
technique in the fault dependency network to identify lead-
ing faults. The centrality aggregation technique considers six
representative centrality metrics such as indegree, between-
ness, closeness, eigenvector, pagerank and hub centrality and
offers a final leading score to identify the leading faults.
Our discussions on fault communities shed light on selecting
X % of the test cases from a prioritized regression test suite.
Finally, we have presented a case study and an evaluation
of ComReg. In the case study, we have developed an Eng-
lish vocabulary learning software, “Tarantula” and identified
leading faults from a fault network after running a set of test
cases at the end of the first phase of the development. Eval-
uation results show that ComReg is better than traditional
approaches in detecting leading faults. We have also showed
the fault communities in the fault network for test-case selec-
tion from a prioritized regression test suite.

The fault dependency network might not be a connected
graph. For example, our fault dependency network of Taran-
tula consists of two components. However, small-world
networks tend to have giant components (e.g., [55–58]). A
giant component is a connected subgraph that contains a
majority of the entire graph’s nodes [59]. The giant compo-
nent fills most of the network—usually more than half and
not infrequently over 90 %—while the rest of the network
is divided into a large number of small components discon-
nected from the rest [27]. Our small-world fault dependency
network also has one giant component (22 nodes). So, if a
fault network has a large number of nodes and if it shows a
large number of connected components, the giant component
could be leveraged to detect the leading faults.

Our work has multiple limitations. First, we built a subject
software (“Tarantula”) to present a case study and show the
effectiveness of our prioritization technique. The Tarantula
is a medium-scale software, which lacks the rigorous devel-
opment cycle of a typical commercial software. This might
lead to a higher number of faults in the system testing. Using
our proposed method in an industrial software testing setting
could provide more insights.

Second, we do not consider the time and resources (e.g.,
testers) required to identify fault dependencies. If a software
is poorlywrittenwith a lot of fault cascades, identifications of
fault dependencies and their management might be costlier
than running the full test suite.

Finally, some centrality algorithms (e.g., betweenness,
closeness) used by ComReg are computationally expensive.
This was not a major issue for the small fault dependency

graph discussed in this paper. However, for a large-scale fault
dependency graph, an approximation algorithm (e.g., k-path
centrality [60]) with parallel implementation is required for
efficiency.

References

1. Leung HKN, White L (1989) Insights into regression testing
[software testing]. In: Proceedings of conference on softwaremain-
tenance, pp 60–69

2. Yoo S, Harman M (2012) Regression testing minimization, selec-
tion and prioritization: a survey. Softw Test Verif Reliab 22:67–120

3. Kayes I (2011) Agile testing: introducing PRAT as a metric of
testing quality in scrum. ACM SIGSOFT Softw Eng Notes 36:1–5

4. Kayes I, Sarker M, Chakareski J (2013) On measuring test quality
in scrum: an empirical study. arXiv:1310.2545

5. Beizer B (2003) Software testing techniques. Dreamtech Press,
India

6. Malishevsky AG, Ruthruff JR, Rothermel G, Elbaum S (2006)
Cost-cognizant test case prioritization. Department of Computer
Science and Engineering, University of Nebraska-Lincoln, Tech-
nical Report

7. Hamlet D, Maybee J (2000) The engineering of software: a tech-
nical guide for the individual, 1st edn. Addison-Wesley Longman
Publishing Co., Inc., Boston In:

8. Elbaum S, Malishevsky A, Rothermel G (2002) Test case prior-
itization: a family of empirical studies. IEEE Trans Softw Eng
28:159–182

9. Rothermel G, Untch R, Chu C, Harrold M (1999) Test case priori-
tization: an empirical study. In: Proceedings of IEEE international
conference on software maintenance (ICSM’99), pp 179–188

10. Rothermel G, Untch R, Chu C, Harrold M (2001) Prioritizing test
cases for regression testing. IEEE Trans Softw Eng 27:929–948

11. Elbaum S, Malishevsky AG, Rothermel G (2000) Prioritizing test
cases for regression testing. In: Proceedings of the 2000ACMSIG-
SOFT international symposium on software testing and analysis
(ISSTA’00). ACM, New York, pp 102–112

12. Srikanth H, Williams L, Osborne J (2005) System test case pri-
oritization of new and regression test cases. In: Proceedings of
international symposium on empirical software engineering

13. Krishnamoorthi R, Sahaaya Arul Mary S (2009) Factor oriented
requirement coverage based system test case prioritization of new
and regression test cases. Inf Softw Technol 51:799–808

14. ZhangL,HouSS,GuoC,XieT,MeiH (2009)Time-aware test-case
prioritization using integer linear programming. In: Proceedings
of the eighteenth international symposium on software testing and
analysis (ISSTA’09). ACM, New York, pp 213–224

15. Walcott KR, Soffa ML, Kapfhammer GM, Roos RS (2006)
Timeaware test suite prioritization. In: Proceedings of the inter-
national symposium on software testing and analysis (ISSTA’06).
ACM, New York, pp 1–12

16. Alspaugh S, Walcott KR, Belanich M, Kapfhammer GM, Soffa
ML (2007) Efficient time-aware prioritization with knapsack
solvers. In: Proceedings of the 1st ACM international workshop on
empirical assessment of software engineering languages and tech-
nologies (WEASELTech’07): held in conjunction with the 22nd
IEEE/ACM international conference on automated software engi-
neering (ASE’07). ACM, New York, pp 13–18

17. Huang CY, Lin CT (2006) Software reliability analysis by consid-
ering fault dependency and debugging time lag. IEEE Trans Reliab
55:436–450

18. Neumann PG (1990) Cause of AT&T network failure. Risks Dig
9:62

123

http://arxiv.org/abs/1310.2545

The network of faults: a complex network approach to prioritize test…

19. Slabodkin G (1998) Software glitches leave navy smart ship dead
in the water. Gov Comput News 13:33727-1

20. Oppenheimer D, Ganapathi A, Patterson DA (2003) Why do inter-
net services fail, and what can be done about it? In: USENIX
symposium on internet technologies and systems, vol 67, Seattle

21. KayesM (2011) Test case prioritization for regression testing based
on fault dependency. In: Proceedings of 3rd international confer-
ence on electronics computer technology (ICECT’11), vol 5, pp
48–52

22. Rooney P (2002) Microsoft’s CEO: 80-20 rule applies to bugs,
not just features. http://www.crn.com/news/security/18821726/
microsofts-ceo-80-20-rule-applies-to-bugs-not-just-features.
htm. Accessed 25 Nov 2014

23. Kayes I, Qian X, Skvoretz J, Iamnitchi A (2012) How influential
are you: detecting influential bloggers in a blogging community.
In: Proceedings of the 4th international conference on social infor-
matics. Springer, Berlin, pp 29–42

24. Kayes I, Zuo X, Wang D, Chakareski J (2014) To blog or not to
blog: characterizing and predicting retention in community blogs.
In: Proceedings of the international conference on social computing
(SocialCom’14), vol 7. ACM, New York, pp 1–7:8

25. Kayes I, Zuo X, Wang D, Chakareski J (2014) Did you blog
yesterday? Retention in community blogs. In: Proceedings of
the international conference on social computing (SocialCom’14).
ACM, New York, pp 16:1–16:2

26. Freeman L (1977) A set of measures of centrality based upon
betweenness. Sociometry 40:35–41

27. Newman MEJ (2010) Networks: an introduction. Oxford Univer-
sity Press, USA

28. Brandes U (2008) On variants of shortest-path betweenness cen-
trality and their generic computation. Soc Netw 30:136–145

29. Bonacich P (1972) Factoring and weighting approaches to status
scores and clique identification. J Math Sociol 2:113–120

30. Page L, Brin S, Motwani R, Winograd T (1999) The pagerank
citation ranking: bringing order to the web. Stanford InfoLab

31. GirvanM, NewmanME (2002) Community structure in social and
biological networks. Proc Natl Acad Sci 99:7821–7826

32. Tyler JR, Wilkinson DM, Huberman BA (2005) E-mail as spec-
troscopy: automated discovery of community structure within
organizations. Inf Soc 21:143–153

33. Nazir A, Raza S, ChuahCN (2008)Unveiling facebook: ameasure-
ment study of social network based applications. In: Proceedings
of the 8th ACM SIGCOMM conference on internet measurement
(IMC’08). ACM, New York, pp 43–56

34. Onnela JP, Saramäki J, Hyvönen J, Szabó G, Lazer D, Kaski K,
Kertész J, Barabási AL (2007) Structure and tie strengths in mobile
communication networks. Proc Natl Acad Sci 104:7332–7336

35. Kumar R, Novak J, Raghavan P, Tomkins A (2004) Structure and
evolution of blogspace. Commun ACM 47:35–39

36. Chen J, Yuan B (2006) Detecting functional modules in the yeast
protein–protein interaction network. Bioinformatics 22:2283–
2290

37. NewmanME, GirvanM (2004) Finding and evaluating community
structure in networks. Phys Rev E 69:026113

38. Pareto V (1971)Manual of political economy.Macmillan, London
39. Duong L (2009) Applying the “80–20 rule” with the standish

group’s statistics on software usage. http://bit.ly/beBOf1.Accessed
25 Nov 2014

40. WordHacker (2006) Gre word list. http://www.wordhacker.com/
en/article/Barron_gre_list_a.htm. Accessed 25 Nov 2014

41. Watts DJ, Strogatz S (1998) Collective dynamics of ‘small-world’
networks. Nature 393:440–442

42. Jeffrey D, Gupta R (2006) Test case prioritization using rele-
vant slices. In: Proceedings of 30th annual international computer
software and applications conference (COMPSAC’06), vol 1, pp
411–420

43. Zhi-hua Z, Yong-min M, Ying-ai T (2012) Test case prioritization
for regression testing based on function call path. In: Fourth inter-
national conference on computational and information sciences
(ICCIS), pp 1372–1375

44. Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E (2008) Fast
unfolding of communities in large networks. J Stat Mech Theory
Exp 2008:P10008

45. Do H, Rothermel G, Kinneer A (2004) Empirical studies of test
case prioritization in a JUnit testing environment. In: 15th interna-
tional symposium on software reliability engineering (ISSRE’04),
pp 113–124

46. Korel B, Tahat LH, Harman M (2005) Test prioritization using
systemmodels. In: Proceedings of the 21st IEEE international con-
ference on software maintenance (ICSM’05). IEEE, pp 559–568

47. Korel B, Koutsogiannakis G, Tahat L (2008) Application of system
models in regression test suite prioritization. In: IEEE international
conference on software maintenance (ICSM’08), pp 247–256

48. Jones J, Harrold M (2003) Test-suite reduction and prioritization
for modified condition/decision coverage. IEEE Trans Softw Eng
29:195–209

49. Kim JM, Porter A (2002) A history-based test prioritization tech-
nique for regression testing in resource constrained environments.
In: Proceedings of the 24th international conference on software
engineering (ICSE’02), pp 119–129

50. Sherriff M, LakeM,Williams L (2007) Prioritization of regression
tests using singular value decomposition with empirical change
records. In: The 18th IEEE international symposium on software
reliability (ISSRE’07), pp 81–90

51. Leon D, Podgurski A (2003) A comparison of coverage-based
and distribution-based techniques for filtering and prioritizing test
cases. In: Proceedings of 14th international symposiumon software
reliability engineering (ISSRE’03), pp 442–453

52. Sampath S, Bryce R, Viswanath G, Kandimalla V, Koru A (2008)
Prioritizing user-session-based test cases for web applications test-
ing. In: Proceedings of 1st international conference on software
testing, verification, and validation, pp141–150

53. Rummel MJ, Kapfhammer GM, Thall A (2005) Towards the pri-
oritization of regression test suites with data flow information.
In: Proceedings of the ACM symposium on applied computing
(SAC’05). ACM, New York, pp 1499–1504

54. Qu B, Nie C, Xu B, Zhang X (2007) Test case prioritization
for black box testing. In: 31st annual international of computer
software and applications conference (COMPSAC’07), vol 1, pp
465–474

55. Faloutsos M, Faloutsos P, Faloutsos C (1999) On power-law rela-
tionships of the internet topology. SIGCOMM Comput. Commun.
Rev. 29:251–262

56. Aiello W, Chung F, Lu L (2001) Random evolution in massive
graphs. In: Proceedings of 42nd IEEE symposium on foundations
of computer science, pp 510–519

57. Redner S (1998) How popular is your paper? An empirical study
of the citation distribution. Eur Phys J B-Condens Matter Complex
Syst 4:131–134

58. Kayes I, Kourtellis N, Quercia D, Iamnitchi A, Bonchi F (2015)
The social world of content abusers in community question answer-
ing. In: Proceedings of the 24th international conference on world
wide web (WWW’15). International world wide web conferences
steering committee, Republic and Canton of Geneva, pp 570–580

59. Newman ME, Strogatz SH, Watts DJ (2001) Random graphs with
arbitrary degree distributions and their applications. Phys Rev E
64:026118

60. Jiang K, Ediger D, Bader D (2009) Generalizing k-betweenness
centrality using short paths and a parallel multithreaded imple-
mentation. In: international conference on parallel processing
(ICPP’09), pp 542–549

123

http://www.crn.com/news/security/18821726/microsofts-ceo-80-20-rule-applies-to-bugs-not-just-features.htm
http://www.crn.com/news/security/18821726/microsofts-ceo-80-20-rule-applies-to-bugs-not-just-features.htm
http://www.crn.com/news/security/18821726/microsofts-ceo-80-20-rule-applies-to-bugs-not-just-features.htm
http://bit.ly/beBOf1
http://www.wordhacker.com/en/article/Barron_gre_list_a.htm
http://www.wordhacker.com/en/article/Barron_gre_list_a.htm

	The network of faults: a complex network approach to prioritize test cases for regression testing
	Abstract
	1 Introduction
	2 Fault dependency-aware test-case prioritization
	2.1 Problem statement
	2.2 Our approach: ComReg
	2.3 Fault communities to select X% of test cases

	3 Case study and evaluation
	3.1 An overview of Tarantula
	3.2 Development of Tarantula
	3.3 Test cases and faults
	3.4 Properties of the fault network
	3.5 Leading faults and prioritized test cases
	3.6 Effectiveness of ComReg
	3.7 Community detection techniques

	4 Related work
	5 Summary and discussions
	References

