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Abstract—Combining and incorporating rich semantics of user
social data, which is currently fragmented and managed by
proprietary applications, has the potential to more accurately
represent a user’s social ecosystems. However, social ecosystems
raise even more serious privacy concerns than today’s social
networks. This paper proposes to model privacy as contextual
integrity by using semantic web tools and focuses on defining
default privacy policies, as they have the highest impact. Through
a real implementation and performance evaluation we show that
such a framework is practical.

Index Terms—Privacy as contextual integrity; social ecosys-
tems; online privacy

I. INTRODUCTION

Social ecosystems [1] refer to the collection of rich datasets
of user-to-user interactions in support of social applications.
This data is collected from Internet-mediated social interac-
tions (such as declared relationships in online social networks
or tagging/contributing content in user-generated content plat-
forms), from public profiles (to infer homophily relationships),
and from phone-recorded real life interactions (such as co-
location sensing and activity identification). Social ecosystems
have enabled a large set of social applications, such as recom-
mender systems [2], [3], [4], email filtering [5], [6], defending
against Sybils [7], [8] and against large-scale data crawls [9].
The novel scenarios activated by social ecosystems, however,
raise serious concerns regarding user privacy.

User privacy in online activities is already a hot issue
due to lack of formal framing [10]. The primary aspect
of social ecosystems, that of aggregating data from various
sources to provide it (possibly processed) to a diversity of
applications, significantly amplify the privacy concern. First,
aggregated data from different contexts of activity presents
a more complete and possibly uncomfortable picture of a
person’s life. Second, data is to be exposed to a variety of
applications, themselves from different contexts of activity,
from personal to professional.

Numerous solutions addressed privacy in social ecosystems,
typically in the context of a particular system [11], [12], [13],
[14], [15] or for particular application scenarios [16], [17],
[18]. Little addressed, however, is the setting of a default
privacy policy that protects the user and, at the same time,
allows the user to benefit from application functionality. While

users are invited to change the default privacy settings, in
reality very few do it. For example, more than 99% Twitter
users retained the default privacy setting where their name, list
of followers, location, website, and biographical information
are visible [19]. Other studies [20], [21], [22] show that
the majority of Facebook users have default or permissive
privacy settings. More worrisome, when the default settings
are not matched with user preferences, they almost always
tend to be more open, exposing the content to more users
than expected [23]. Users’ unwillingness to change the default
policy is sometimes aggravated by the complexity of the pro-
cess; default privacy controls are too cumbersome to properly
understand and use [24], [25], [26].

The privacy challenge is fundamentally due to the lack
of a universal framework that establishes what is right and
wrong [10]. Nissenbaum proposed such a framework in her
formulation of privacy as contextual integrity [27]. To the best
of our knowledge, one line of work approaches privacy as con-
textual integrity by proposing a formal language for expressing
generic privacy expectations [28]. We take the problem one
step further by focusing not only on policy specification, but
also on designing and prototyping the enforcing of contextual
integrity-based default policies for social ecosystems.

In this work we employ semantic web techniques to imple-
ment Nissenbaum’s framework for defining privacy as contex-
tual integrity, with a specific focus on defining application and
platform-independent default privacy settings. In the context
of the classification proposed in [29], this work addresses
the problem of social privacy, that aims to protect user
information from other users and applications running on other
users’ behalf. To this end, we propose Aegis, an extensible,
fine-grained privacy model for social ecosystems based on
semantic web technologies. The model implements the basic
concepts of Nissenbaum’s privacy framework: social contexts,
norms of appropriateness, and norms of distribution. It builds
on ontologies used to encode social data and implicitly repre-
sent social contexts, and on Resource Description Framework
(RDF) statements/SPARQL queries to define and verify access
to data. This work extends our previous efforts [30] with a
refined data model, the implementation of the prototype and
experimental evaluation.

The contributions of this work are:



• We propose an ontology-based social ecosystem data
model to capture users aggregated social data from di-
verse sources (e.g., Facebook, LinkedIn etc.). This data
model can be used to acquire information from an unre-
stricted set of social sources and export it to an ever-
evolving collection of socially-aware applications and
services.

• We employ semantic web technologies to generate default
privacy policies based on Nissenbaum’s contextual in-
tegrity theory. These policies are extensible, fine-grained
and expressive enough to be changed by the user. Fur-
thermore, the policy model is generic enough to be used
in other systems.

• We provide an architecture and a prototype implemen-
tation of our privacy model that automatically enforces
access control policies on a social ecosystem knowledge
base. Our experimental evaluation on three real-world
large networks demonstrates the applicability in practice
of our solution.

The rest of the paper is organized as follows. Section II
introduces the contextual integrity theory and discusses its
relevance to social ecosystems. Section III describes the sys-
tem and data models, and the system architecture. We present
our policy specification in Section IV. Section V presents
our prototype implementation and experimental evaluation.
Section VI reviews related work and Section VII concludes.

II. PRIVACY AS CONTEXTUAL INTEGRITY IN SOCIAL
ECOSYSTEMS

While notoriously difficult to define [31], privacy is under-
stood as an individual’s right to determine to what extent her
data can be communicated to others. Privacy is typically seen
not simply as the absence of information about us in the minds
of others, but rather as the control we have over information
about ourselves [32], [33].

Social ecosystems, which combine users’ social information
from diverse sources and incorporates richer semantics, pose
a daunting task in terms of privacy enforcement. It has to
exercise a more complex representation of users’ social world,
ranging from object-centric domains (e.g., common prefer-
ences) to people-centric domains (e.g., declared friendship
relationships). Privacy-preserving default policy generation in
such a complex system could be leveraged by contextual
integrity, a social theory-based account of privacy proposed
by Nissenbaum [27]. Instead of defining the term “privacy”,
Nissenbaum proposes a reasoning framework for privacy as
contextual integrity, where privacy is seen as neither a right to
secrecy nor a right to control, but a right to an appropriate flow
of information about an individual (referred to as “personal
information”).

Nissenbaum’s account of privacy as contextual integrity is
based on two non-controversial facts. First, every transfer of
personal information happens in a certain social context and
all areas of life (and online activity makes no exception [10])
are governed by context-specific norms of information flow.
Second, people move among a plurality of distinct contexts,

thus altering their behavior to correspond with the norms of
those contexts, aware to the fact that information appropriately
shared in one context becomes inappropriately shared into a
context with different norms. For example, it is appropriate to
discuss romantic entanglements with friends, financial infor-
mation with banks, and work-related goals with co-workers,
but sharing romantic experiences with the bank is out of place.

On the basis of these facts, Nissenbaum suggests that
contextual integrity is maintained when two types of norms are
upheld: Norms of appropriateness and Norms of distribution.
Norms of appropriateness circumscribe the type of information
about persons that is appropriate to reveal in a particular
context. So, it is appropriate to share medical information with
doctors, but generally not appropriate to share it with em-
ployers. Implemented in social ecosystems, this type of norm
specifies where context-specific data can be communicated.
For example, if Alice is a colleague of Bob in the professional
context, then requests from Alice regarding Bob’s gaming
context such as the games owned by Bob should be denied, as
the requests do not comply with the norms of appropriateness.

Norms of distribution cover the transfer of a third party’s
personal information from one user to another. In a social
ecosystem, the norm of distribution suggests a default policy
that restricts the distribution of information. For example, if
Alice and Bob have a shared content—e.g., Bob’s picture
that he shared with Alice—then a request from Charlie to
Alice regarding the content should not succeed without Bob’s
consent, even if Alice owns Bob’s picture now.

III. SYSTEM MODEL AND ARCHITECTURE

Nissenbaum’s framework is articulated for protecting the
citizen from an overly curious government. For the digital
context, her approach works best as a default privacy policy,
which is precisely the focus of this paper. Thus, our proposed
system, Aegis, enforces default policy as contextual integrity
by modeling two assumptions from real world. First, informa-
tion is always tagged with the context in which it is revealed.
Second, the scope of privacy norms is always internal to a
context. To implement this, Aegis implements the constructs of
user roles and actions, resources, contexts, and privacy norms.

A. System Model

Similar to Dey et al.’s definition of a context [34], we
define the social context of a user as the collection of social
information that describes the user in a domain. For example,
data about Bob’s education, skills, and LinkedIn connections
describe Bob’s Professional context.

Our system model is defined by the following:
1) there is an unrestricted set of disjoint social contexts in

the system;
2) a user belongs to only one social context at any time;
3) a user can have one or more roles in every social context

s/he is part of;
4) each piece of data (resource) is assigned to only one

context; however, users can share a resource with other



users, in which case the resource is replicated in each
of the other users’ current contexts;

5) a request for a resource is made on behalf of the
requester’s role in the particular context in which the
requester is when the request is made;

6) a request specifies an action, which could be read, write,
delete or replicate to another user’s ownership.

Note that in real life users can be simultaneously part of
multiple contexts: for example, Alice is both a friend and a
colleague for Bob. However, at any given time, only one of
these contexts will be considered, perhaps the prominent one
given the physical environment (e.g., at work) or based on a
system-wide ranking of contexts (e.g., work has higher priority
over friendship, to limit sensitive data exposure).

Implementing contextual integrity in the default privacy
policies is thus reduced to implementing the norms of ap-
propriateness and distribution in this system model.

B. Modeling Social Contexts and Roles

We model social contexts, and therefore the entire social
ecosystem (consisting of a set of social contexts), based
on ontologies. An ontology is a set of entities, instances,
functions, relations and axioms, and is used as a vocabulary
for expressing the knowledge of a domain.

The traditional advantages of using ontologies apply in this
case as well: first, an ontology provides a common vocabulary,
thus it ensures formal and structured representation of users’
contextual data. Second, using ontologies provide semantic
interoperability, thus data can be used by a variety of appli-
cations. Third, high-level logic inferences are possible as data
model have semantics associated with it. For example, if Bob
has content in his professional context (contents subClassOf
ProfessionalContext) and recommendations are content, then
recommendations are inferred to belong to Bob’s professional
context. Finally, a social ecosystem can be built incrementally
by adding new context ontologies. We can also reuse existing
web ontologies from different domains to meet the demand of
an exhaustive scale social ecosystems ontology. For example,
an ontology [35] is already available to model bloggers’
interest in a blogging community.

To represent the data model, we classify online social
contexts into entity classes (e.g., friendship context, profes-
sional context, blogging context). The context classification is
inherent in the modeling process because context definition
depends on underlying entities and relationships among the
entities.

Our context ontology is divided into an upper ontology and
domain-specific ontologies. The upper ontology is a high-level
ontology which captures general contexts (e.g., Friendship,
Professional, Gaming). The domain-specific ontologies are
collections of low-level ontologies which define the details
of general contexts and their properties in each sub-domain.

Figure 1 shows a class hierarchy of the entities considering
some online contexts of a user, where the top level class (root)
is the context itself. All generic contexts are subclasses of
the root context entity and all domain-dependent descriptors

(classes, properties) have some common properties to inherit
from the root. The lower level sub-classification expresses the
domain dependence of the contexts.

The addition of new social contexts to the ecosystem
happens naturally, with the implementation of new sensors for
new social signals (see next section): the developers of social
sensors have to be aware of the ontology of the social contexts
to which the sensors report, in order to maintain structural data
representation. Another way to extend the social ecosystem is
by extending a social context itself when new relevant social
signals become available: for example, Facebook recently
added a service called Gifts which allows users to buy presents
for their friends. Consequently, the social context model needs
to be adaptive to accommodate additions of new contexts.
Ontologies help in designing a scalable context model.

Friendship
Context

Context

Professional
Context

Gaming
Context

Blogging
Context

'Other'
Context

Context
specific
ontologies

isa
Upper
Ontology

Fig. 1: Context entities and their domain dependent elements.

Figure 2 gives an example of three contexts of a user’s
digital world: Professional, Friendship and Gaming. The repre-
sentation of the ontology is person-centric which gives a user-
oriented viewpoint of the data model. The three large circles
in the model are the contexts; each circle encodes context-
specific knowledge and they are subclasses of Context.

Roles are modeled as relationships: for example, isCol-
leagueOf in Alice’s ecosystem specifies that Bob has the role
of a colleague in her professional context. Roles, as relation-
ships, are thus asymmetrical: Charlie might be a follower in
Alice’s followers ecosystem but Alice might not be Charlie’s
follower.

We use OWL [36] to model social contexts. OWL is more
expressive than other ontology languages such as RDFS [36].
Moreover, W3C Web Ontology Working Group has defined
OWL from an existing rich language DAML+OIL 1.

C. Aegis Architecture

Our general architecture fits the Social Hourglass infras-
tructure introduced in [37]. The focus of this work is the
Privacy Management Layer, presented in Figure 3. It receives
input from users’ personal aggregators and outputs privacy-
compliant social data to applications. The input from each
user’s personal aggregator is a labeled, directed ego net, that
represents the user’s recorded social interactions with other
users, with each type of interaction semantically tagged.

A brief explanation of the Social Data Acquisition and
Aggregation Layer at the bottom of Figure 3 (that belongs
to the social hourglass infrastructure) is presented next. (For

1http://www.daml.org/2000/12/daml+oil-index.html
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Fig. 2: A partial definition of social ecosystems ontology
considering Professional, Friendship and Gaming contexts. A
circle represents a context, which contains context specific
classes (e.g., declared social groups).

more details we refer the reader to [37].) A social sensor is an
application running on behalf of a user on a user’s device as
an independent application or in the browser) and observing
one or more social signals (for example, Facebook interactions
of the user with other users). It reports processed social data
in the form of <contact ID, type of interaction, strength of
interaction> to the user’s aggregator. The aggregator runs
on the user’s trusted device (e.g., mobile phone or home
computer, but not on a shared computer or a commercial
service). It processes all such information received from the
social sensors deployed on behalf of its user and reports an
aggregated and personalized social edge to the Social Data
Management Layer and to the Contextual Policy Definer. For
user ego, this social edge is of the form <ego, alter, context,
weight>, where alter is a user ego interacted with in context
with the interaction strength weight. Social data management
can be implemented by various solutions; to provide surveil-
lance privacy protection [29], distributed solutions such as
Prometheus [38] can be used.

Social sensor design and implementation are context spe-
cific: for example, a LinkedIn sensor observes its user’s
professional data and a Facebook sensor observes the user’s
friendship data based on the ontology shown in Section III-B.
In addition to requirements related to sensor accuracy and
performance, sensor design should address the following. First,
a particular sensor can target one context only (thus, report one
label only), but is capable of collecting data from different
social signals. For example, a gaming sensor could collect

gaming related data from multiple services, e.g., Stream2 and
Giantbomb3. Moreover, by using the ontology vocabulary,
sensors should be able to distinguish context-specific data
from the wealth of social data existing in a service. Second,
sensors should be able to cope with changes in ontology and
act immediately.

The Privacy Management Layer in Figure 3 is responsible
for managing and enforcing privacy policies, and thus for
extracting and applying the default policies as well. This
component communicates with the Social Data Management
Layer which implements social contexts and roles.

Socially-aware ApplicationsSocially-aware Applications

A1 A2 A3

S11 S21 S22 S33S32 S43

Policy 
Evaluator

Policy 
Extractor

Policy Repository

User
Defined

Default
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Ontology
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Social Data 
Management Layer

Aegis: Privacy
Management 
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Ontology

Fig. 3: A layered architecture of social data collection, per-
sonalization and management for socially aware applications
along with Aegis, as a form of privacy management layer.

The Contextual Policy Definer generates default access
control policies based on a social ontology and the contextual
integrity norms and stores them in the Policy Repository.
Policies in the Policy Repository can be edited with the GUI-
based Policy Editor. The Contextual Policy Definer generates
default policies based on the following rule: only roles in
a user’s social context are allowed access to the user’s data
associated with that particular context. An example of a default
policy extracted with this rule is the following: all users with
a Colleague role in Bob’s Professional context can access (all)
his data associated to the Professional context. Our policy
model is granular; it defines a policy for every resource
covering all the contexts a user could belong to.

The Policy Manager consists of extractor and evaluator for
handling access requests. In particular, any access request is in-
tercepted by the Policy Evaluator, which evaluates the policy.
Permitted access requests are finally fulfilled by returning data
from the social ecosystem knowledge base (SEKB) through

2http://www.steamcommunity.com/
3http://www.giantbomb.com/



social data extractor. The policies are stored in the policy
repository and the policy extractor extracts policies from the
policy repository.

IV. POLICY SPECIFICATION

A policy is defined as a set of RDF statements. As shown
in the architecture, the contextual policy definer generates
policies that obey the two information norms of contextual
integrity: norms of appropriateness and distribution.

Let us take as example a policy generated by the policy
definer for the resource groups in the Professional context:
Bob’s colleagues can read his professional group involvement
in the Professional context. The policy can be formalized as
the following SPARQL query, <Policy>, where the prefixes
p: and se: represent the namespace of the policy model and
of the social ecosystems model, respectively:

<Policy>
ASK
where {
?req rdf:type p:requestor.
?req p:allowed p:read.
p:read p:performedOn Bob.
?req se:isColleagueOf Bob.
Bob se:professionalMember ?group.}

<Augmented Policy>
ASK
where {

Alice rdf:type p:requestor.
Alice p:allowed p:read.
p:read p:performedOn Bob.
Alice se:isColleagueOf Bob.
Bob se:professionalMember ?group.}

Accept request
(requestor, resource, action)

Add request specific 
auxiliary information 

to SEKB

Default 
Policy?

Infer context from 
the requested 

resource

Extract policy

Extract 
policy

Execute
Query

Triple 
 returned?

Grant 
access

Deny
access

remove auxiliary 
information from 

SEKB

Yes No

Yes

No

Fig. 4: Request handling process.

A basic access request is a triple <rstr, rsc, act>, where
rstr is a user who requests the access (e.g., an instance of

se:Person), rsc is the resource requested (e.g., se: Photo), and
act is the type of action (read/insert/delete).

When a request such as “Alice wants to see Bob’s profes-
sional group involvement” comes to the policy manager, the
predefined policy variable ?req will be replaced by Alice
as shown by the augmented policy. The policy evaluator will
temporarily insert policy-related auxiliary RDF statements to
the knowledge base, such as the first three statements of the
augmented SPARQL query, and executes the query over the
modified knowledge base. The above policy representation
states that the access request will be granted if Alice and Bob
are colleagues. The same access request from Bob’s teammate
in the Gaming context will be denied because of lack of
appropriate triples in the SEKB, thus implementing the norm
of appropriateness.

Similarly, the system will disallow access to a resource that
is shared or co-owned with someone, upholding the norms
of distribution. For example, the following policy restricts
Charlie’s access to Bob’s photos that he previously shared with
Alice.

<Policy>
ASK
where {
?req rdf:type p:requestor.
?req p:allowed p:read.
p:read p:performedOn Bob.
?req se:isFriendOf Bob.
Bob se:hasPhoto ?photo.
?photo se:status se:notShared}

Our policy representation is granular, as it allows policies
for each resource. For the request, the policy manager will
infer the context and will decide whether the default or
personalized policy will be enforced (see policy evaluation
flow chart from Figure 4). As in the data model we have
hierarchy among classes (which eventually define resources)
and a group of classes belong to a context, we can infer
the context from requested resource. Note that a default
auto generated policy could be personalized by the user and
in this case, the personalized policy will be evaluated. For
example, from a requested resource recommendation, a context
inference is possible from the following SPARQL query to
knowledge base:

PREFIX rdf:<http://www.w3.org/1999/02/22-
rdf-syntax-ns#
PREFIX rdfs:<http://www.w3.org/2000/01/
rdf-schema#
PREFIX se:<http://www.dsg.cse.usf.com/se>

SELECT ?superClass
Where {

se:requestedResource rdfs:subClassOf
?superClass .}

The policy engine will extract the policy of the inferred context
and execute it.



V. EXPERIMENTAL EVALUATION

We have implemented a prototype of Aegis in Java Platform
Standard Edition 6 (Java SE 6). We used the capabilities
offered by Jena4 to implement both the knowledge base and
the policy manager. Jena is a framework for building semantic
web applications, and provides a collection of tools and Java
libraries to develop semantic web and linked-data applications,
tools and servers. Jena is currently the most comprehensive
framework to manage RDF and Web Ontology Language
(OWL) data in Java applications as it provides APIs for
RDF data management, an ontology API for handling OWL
and RDFS ontologies and a query engine compliant with
the SPARQL specification. We leverage TDB5 for persistent
storage of knowledge base.

Aegis was deployed and evaluated on a machine equipped
with 2 GHz Intel Core i7 processor, 4 GB 1333 MHz DDR3
RAM, Mac OS X Lion 10.7.5 operating system, and Java 1.6
runtime environment.

Our evaluation of the prototype implementation of Aegis
had the following objectives. First, we wanted to evaluate the
performance of the policy engine in executing default policies
for realistic workloads with a realistically large number of
users. For this, we chose three real social network datasets
from different domains and experimented with default policy
enforcement. Second, we wanted to investigate the scalability
of the policy engine in executing default policies. Ideally, the
policy engine should scale well with the size of the social
ecosystem knowledge base. Finally, we wanted to measure
the overhead induced by default policies.

A. Experimental Setup

We constructed social ecosystems knowledge base from
three different real networks. Table I presents a summary of
these datasets.

• soc-Slashdot0811 (from [39]): a network of friend/foe
links between the users of Slashdot, a news website which
features user-submitted and editor-evaluated technology-
oriented news. Using Slashdot Zoo feature, users can tag
each other as friends or foes.

• BlogCatalog (from [40]): a blogging website where reg-
istered users can create online profiles, post blogs, and
automatically receive blogging updates from the users with
whom they have declared “friend” relationships.

• Facebook (from [41]): a highly popular online social
network. The dataset contains friend links of the users.

To provide test cases, we selected 13 sizes ranging from 100
to 70,000 users from the above networks. To create a sub-graph
of each size, we randomly picked a node as a seed in a network
and applied snowball sampling algorithm. Although snowball
sampling is biased toward high-degree nodes, it preserves the
topological structure of a graph [42]. For each sampled sub-
graph, we created a SEKB containing nodes of type Person

4http://jena.apache.org/index.html
5http://jena.apache.org/documentation/tdb/index.html

and the relationships among them. More specifically, a ego’s
(user) connections are randomly labeled according to the data
model (se: isFriendOf, se: isColleagueOf, se: isTeammateOf )
to abstract a user’s social ecosystem and contexts (Friendship,
Professional and Gaming). Also, we added users Friendship-
Group, ProfessionalGroup and GamingGroup using a random
string generator as resources in relevant contexts to invoke
different test cases.

We considered two types of responses: (type1) positive
authorization access control response and (type 2) negative
authorization access control response. Type 1 accesses are
allowed, while type 2 are denied by the default policies. To
this end, we generated two types of access requests. They are
as follows: User U1 belongs to the context C1 of user U2 and
she requests U2’s resource R1 from the same context C1. And,
User U1 belongs to the context C1 of user U2 and she requests
U2’s resource R2 from different context C2. For each sample
size of each dataset we evaluated both requests 10 times and
report the average evaluation time. Moreover, we performed
the same experiments with no policy enforcement to measure
the policy enforcement overhead.

TABLE I: Summary of the real networks used.

Network Num. of Users Num. of Edges
soc-Slashdot0811(Slashdot) 77,360 905,468
BlogCatalog 88,784 4,186,390
Facebook 63,731 1,545,686

B. Results

The performance results of the policy engine in executing
default policies are shown in Figure 5. It shows positive
and negative authorization access time and the number of
requests answered by the policy engine per second for random
authorizations. Our observations are as follows:

First, for all datasets and both types of authorizations, the
time needed to fulfill access requests increases linearly with
the size of the social ecosystem knowledge base (SEKB). As
such, inference time of the default policies vary according to
the size of the SEKB.

Second, for the same size of SEKB, positive and negative
authorization take about the same time. Intuitively, a positive
authorization should take less time than a denied request
due to less scanning in the knowledge base. To asses the
significance of the time difference, we ran a two sample t-
test in which we compared the time taken for positive and
negative authorization time for all sizes of SEKB. A t-test
determines if two sets of data are significantly different from
each other [43]. We obtained a p-value of 0.96, thereby
confirming that the difference is not statistically significant.
This is due to the implementation of the semantic data store,
TDB: data structures in TDB use TDB B+Trees, a custom
implementation of threaded B+Trees. The threaded nature
implies that long scans such as negative authorizations of
indexes (it uses triple and quad indexes) proceeds without
needing to traverse the branches of the tree.



Third, for up to 10, 000 users in the SEKB, both accepted
and denied access request execute fast on our tested machine
(tens of milliseconds). However, as the knowledge base in-
creases with the number of users, performance decreases. This
is more visible for the BlogCatalog dataset, which has about
three times more edges per node than the other datasets (see
Table I). This behavior is due to the stress SEKB puts on
memory: a denser graph requires more memory, thus with the
increase in the number of users represented, penalties related
to swapping will take place. Obvious solutions to this per-
formance limitation include 1) increasing system memory to
realistic capacity for an in-production server and 2) employing
distributed solutions for SEKB data management.

To evaluate the overhead introduced by the policy engine for
executing default policies, we tested the time needed to execute
request with and without default policies in place. For each
sampled size, we took the average access time for positive and
negative authorizations both with and without default policies.
Figure 6 shows the comparison. The difference between access
requests with and without policies ranges from 3.17ms to
12.06ms. To assess the significance of this overhead, we ran
a two sample t-test in which we compared the access time
with and without default policies. The p-value of this t-test is
0.81, which implies the overhead is statistically insignificant.
So, we conclude that the action of default policy enforcement
does not impose a significant burden on social ecosystems.

One of the limitations of the workloads is that they only
contain ego-nets and social groups. However, a social ecosys-
tem ontology is a more diverse collection of entity types and
relations (as shown in Figure 2). A long chain of context infer-
ences, such as “X is a photo, which is content, and the content
belongs to the friendship context” will likely take longer
time. Moreover, overlapping contexts (such as professional
and friendship and gaming) will create denser ego-nets, hence
more memory required per user. Consequently, the scalability
plots shown in Figure 6 will change, also function of the
available physical memory. However, the limited availability
of appropriate real-world traces prevented us from doing more
sophisticated performance analysis.

VI. RELATED WORK

Different solutions have been proposed to control access
to users data on social networking applications in response
to increasing popularity in this type of applications. In this
section we discuss privacy models and frameworks that are
targeted to social systems.

Trust-based access control policies are inspired by research
and development in trust and reputation in social networks.
Kruk [44] proposes Friend-of-a-friend (FOAF)-Realm, an
ontology-based access control mechanism. FOAF uses RDF
to describe relations among users. The D-FOAF system [45]
is a FOAF ontology-based distributed identity management
system for social networks, where information inherent in
social networks is utilized to provide community-driven access
rights delegation. Both systems use a generic definition of
relationships (“knows”) as a trust metric and generates rules

that control a friend’s access to resources based on degree of
separation in the social network. This approach that uses the
degree of separation as the only way to quantify the level
of relationship between two users ignores the relationship
type. Choi et al. [46] consider named relationships (e.g.,
worksWith, isFriendOf, knowsOf) in modeling trust. A more
nuanced trust-related access control model is proposed by
Carminati et al. [47] based on relationship type, degree of
separation, and trust level between users in the network.

An inherent problem in trust-based privacy models is that
the trust threshold values should be smoothed as much as
possible. In practice, it is difficult to comprehend and spec-
ify appropriate trust thresholds without prior threshold value
tuning experiments. Our approach avoids this problem by
not using trust (always difficult to define), but by capturing
instead the information semantics using an ontology-based
access control policy .

Semantic rule-based policies have also emerged as a promis-
ing choice to control access to users social data. Rule-based
policies represent the social knowledge base in an ontology
(e.g., OWL) and define policies as Semantic Web Rule Lan-
guage (SWRL) rules6. Access request related authorization is
provided by reasoning on the social knowledge base. Systems
that leverage OWL and SWRL to provide rule-based access
control framework are [48], [49]. Although conceptually
similar, [49] provides richer OWL ontology and different
types of policies; access control policy, admin policy and
filtering policy. The practicality of these solutions is difficult to
evaluate in the absence of a proof-of-concept implementation.
A more detailed semantic rule-based model is [50], which
also provides a proof-of-concept implementation.

Rule-based privacy models have several limitations. First,
authorization is provided by forward reasoning on the whole
knowledge base, challenging scalability with the size of the
knowledge base. Second, all authorizations must be recom-
puted if a change occurs in the social knowledge base. And
finally, rule management is complex and requires a team
of expert administrators [51]. In our approach the social
knowledge base can be easily distributed, such that a user’s
trusted peer handles the user-related social data requests (like
in [38]). Furthermore, re-computation of all policies is not
required in case of knowledge base changes.

Role and Relationship-Based Access Control (ReBAC) are
other types of privacy models that employ roles and rela-
tionships in defining privacy policies. Fong [52] proposes
a ReBAC model based on the context-dependent nature of
relationships in social networks. This model targets social
networks that are poly-relational (e.g., teacher-student rela-
tionships are distinct from child-parent relationships), directed
(e.g., teacher-student relationships are distinct from student-
teacher relationships) and tracks multiple access contexts that
are organized into a tree-shaped hierarchy. When access is
requested in a context, the relationships from all the ancestor
contexts are combined with the relationships in the target

6http://www.w3.org/Submission/SWRL/
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access context to construct a network on which authorization
decisions are made. Our work is similar in that we also model
relationships in a social context as the means to access and
distribute social data. But our objective is different, as we
do not target particular social networks, but generate default
policies for aggregated social data that could be accessed by
diverge social applications.

Giunchiglia et al. [53] propose RelBac, another relation-
based access control model to support sharing of data among
large groups of users. The model defines permissions as
relations between users and data, thus separating them from
roles. The formalization of the RelBac model as an entity-
relationship model allows for its direct translation into descrip-
tion logics, which also allows reasoning. The model, however,
does not provide any precise social aspect and lacks auto
generation of default policies.

The work conceptually closest to our paper is PriMa [54].
PriMa also auto generates access control policies for users,
acknowledging the fact that it is perhaps not wise to rely on
regular users to manually set up their access control policies
because of the growing complexity of the social network and
diversity of user contents. The policies in PriMa are generated

based on intuitive factors such as average privacy preference
of similar and related users, accessibility of similar items in
similar and related users, closeness of owner and accessor
(measured by the number of common friends), popularity of
the owner (i.e., popular users have sensitive profile items),
etc. Access control policies for profile items are finally gen-
erated aggregating these factors. This approach is vulnerable
to highly volatile policies due to changes in these factors.
Moreover, a large number of factors and their parametrized
tuning contribute to longer policy generation and enforcement
time. Unfortunately, these limitations are not addressed, so it
is difficult to judge their impact in practice. Another auto-
generated policy framework is PolicyMgr [55], based on a
supervised learning mechanism. PolicyMgr leverages user-
provided example policy settings as training sets and build
classifiers that are the basis for auto-generated policies to
regulate access to user profile objects. Again, its practicality
in terms of response time has not yet been shown.

Our privacy model differs from the solutions above by the
focus on generating default policies for a social ecosystem
that deals with users’ aggregated social data from different
domains; the existing solutions target single application sce-



narios. Moreover, most of those solutions do not take target
default policy generation as a primary goal. Furthermore, to
the best of our knowledge, we are the first to consider a privacy
framework proposed by social theorists and translate it into an
architecture and proof-of-concept implementation.

VII. SUMMARY AND DISCUSSION

In this paper, we have proposed a privacy model for
social ecosystems based on the semantic web standard. The
privacy model leverages contextual integrity for generating
default policies that protect user’s information from other
users. We designed an architecture in support of the proposed
privacy model, demonstrated its feasibility by building Aegis,
a prototype implementation, and evaluated its performance and
scalability using three large real networks. The experimental
evaluation shows that our system scales well, and policy
enforcement does not impose significant overhead.

Aegis addresses “social privacy” [29] problems such as
those that emerge through the necessary renegotiation of
boundaries as social interactions get mediated by OSN ser-
vices. Social privacy problems occur when access to data is
inappropriately protected due to wrong default or personalized
settings. Often the default settings serve the business model of
the service provider rather than the user’s interests, following
the “opt out” model. Aegis mitigates social privacy threats by
generating default privacy policies that restrict user informa-
tion to be shared or transferred inappropriately. At the same
time, Aegis does not restrict users from choosing personalized
and maybe relaxed privacy settings.

Although our privacy model is designed for targeting user’s
aggregated social data, the model is generic enough to be used
in existing online social networks. For example, Google Plus
and Facebook allow users to select the type of relationship
with another user. This information can be leveraged to
provide higher granularity in social privacy and to implement
privacy as contextual integrity for default privacy settings.

While Aegis addresses social privacy, it may aggravate
surveillance and institutional privacy. Surveillance privacy
threats arise when users’ personal information and social
interactions are leveraged by authorities or service providers.
Institutional privacy [56] refers to those privacy problems
related to users losing control and oversight over the aggrega-
tion, processing and mining of their online social information.
The aggregation of social data in social ecosystems and
the ontology-based labeling (thus, the addition of processed
information) creates new sensitive data that would not have
been directly available. For example, users’ context-specific
data (such as work, personal, etc.) would increase the accuracy
of user profiling to an overly curious, possibly hostile political
regime. These problems are alleviated by implementing the
social ecosystem as a distributed architecture, as in [38].
A distributed architecture eliminates the need for a central,
omniscient authority that is in a privileged position to observe
all the activity in the system.

One of the limitations of our work is that we could not
experiment with a real social ecosystem due to the unavail-

ability of users’ data from multiple sources. Ideally, a social
ecosystem should be an aggregation of social data from various
social network platforms (e.g., Facebook, LinkedIn, Steam).
Instead, we took three large networks and constructed social
ecosystems from those networks. Experiments on a real social
ecosystem would give more insights on our system.

Our future work includes the validation of the policy frame-
work in emerging application scenarios, more specifically
targeting applications that are built on aggregated social data.
These social applications will run on users trusted devices
and their access to social data store will be managed by
Aegis. Furthermore, in order to experiment with Aegis in
a real social ecosystem, we plan to create an “intelligent”
mapping of the users in different social network datasets. This
mapping will create a unification of identities from datasets
and abstract a single user on multiple data sources. We also
want to understand the system in different platform settings,
such as peer-to-peer and mobile computing.
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